AVOID
ERCEPTIOHN=

public void UpdateName(int id, string name)
{
if (id == 0)

throw new Exception(“Invalid id"); &
if (string.IsNullOrEmpty(name))

throw new Exception(“Name can not been empty");

You throw a |ot of exceptions from your code
even for non exceptional situations.

~ TREM
SZHMELLE

COMHMARMD
QUERY SEPARATIOHN

public String printRental()]{ returnsastring, thisisa query.

CheckRentals();
var result = new StringBuilder(); changes interal state.

wait, what?
for (var rental : rentals) {

if (calculated) {
this.amount]+= rental.getAmount(); k
¥

result.append(formatLine(rental));

}
result.append(fornat("Total amount | %f", this.amount));
= true;

return result.toString();

Afunction should eith
o dosomething:
o change the state of an objec

o return something;
o return some information - a guery,

~ TREM
SZHMELLE

TELL DOR'T
AZK

Ask data on order to make decision
Instead of telling what to do...

public void Run(OrderApprovalRequest request)

var order = _orderRepository.Get8yLd(request.Orderld);

throw new Shipped0rdersCannotBechangedexception();

[Cremuestosporoved & ordor states == oraersratos resected)|
T

throw new Rejected0rderCannotBeApprovedException();

T

throw new ApprovedorderCannotBeRejectedException();

order. Status
orderRepository. save(emem

Tell an object what to do rather than asking an object for
its data and acting on it based on that da

~ TREM
SZHMELLE

HO
EHCAPSU_ATION

namespace
{
public class Order
{
public decimal Total[{ get; set; |
public string Currency { get; init; }
public IList<OrderItem> Items { get; init; }
public decimal Tax { get; set; }
public OrderStatus Status { get; set; }
public int Id { get; init; }

no behavior (methods) in Order...
with public getters and setters

An object with no domain purpose (just moving data from
PointA to PointB) is called a Data Transfer Object.

If you have this kind of objects in your domain or business
layer, you are creating an anemic domain model...

~ TREM
SZHMELLE

PRIMITIVE
OESE=SI0M

public void MoveTo(
string address,
string postalCode,
string city,

string country) k

how many parameters can you handle?

All these parameters represent something.
What could it be?

Primitive obsession is a cade smell in which primitive data
types are used excessively to represent your data models.

~ TREM
SZHMELLE

EEEF DEFEHDEHCIES
UP-TO-DATE

Age (y)

Verify.Xunit
xunit

Total is |16.8 libyears behind

Say what?
17 years behind latest versions of our dependencies?

What would happen if we have to
update them?

The best way to keep dependencies up-to-date is to
dedicate time regularly for it.
Use libyear : simple measure of software dependency
freshness.

~ TREM
SZHMELLE

TE=T DATA
EUI_DERZ

PUbLLC votd Converts._total_apount_to_usd()
i

17 Arrange . Hard to decipher

var resortGenerator = new ReportGenerator():
e Novel(

‘G de Maupassant”,
new Country (“France®, Currency.Euro, Language. French)

%

Language. French,

st Long setup,
! s 50 high cognitive load

var educationalBook = new Educationalsook(k
-

ST, oo, il ot
oy oty everywhere

e e

var invoice = new Tnvoscel

Which data influence the behavior?
hard to say...
)
1 net
invoice. dapurchasectook(nove Purchassdook)
‘nvosce AddPurchasedBook{educat onatPurchasedBook)
_inMenoryRepository. AddTosce(moice)

11 ssert
reportGenerator.GetTotalanount (). Should().Be(334.97);

reportGeneratar GetTotalSoldBooks) -Should().Be()

"Test Data Builder eliminates the irrelevant, and amplifies
the essentials of the test." - Mark Seemann

~ TREM
SZHMELLE

FRCTORY
PATTERH

public class OrderTten
i

public Product Product { oo »
public int Quantity { get;

public decinal TaxedAnount < get; ¥ calls an APlin a constructor
public decinal Tax { get; }

public OrderTten(IProductAPI productApi, CreateOrderIten itemRequest, int quantity)

var product =f productApi. GetByane(itenRequest.Nane) ;

Tox = (product. unnnvyhx“ = quantity) . Rmde
TaxedAmount =

itity) Round ();

what?
this constructor makes a check and can throw an Exception...

it is definitely not the kind of stuff you can expect
when instantiating an object...

constructors should not contain any logic...
used only to initialize objects state / fields

Avoiding direct object construction allows us to abstra
the decision-making process from the calling class.

~ TREM
SZHMELLE

MUTATION
TE=TIHG

[Fact]
public void Assert_Portfolio_Is_Not_Null()
{
var portfolio = new Portfolio();
var result = portfolio.Evaluate(bank, Currency.KRW);

Assert.NotNull(portfolio); k

WTF? how portfolio could be null?
what is the behavior we want to test here?
@Test
@DisplayName("5 USD + 10 USD = 15 USD")
void shouldAddMoneyInTheSameCurrency() {
var portfolio = portfolioWith(
dollars(5),
dollars(10)
)i

var result = portfolio.evaluate(bank, USD);

wait...

where is the assertion part in this test? Ew.F-E
L i

Mutation Testing is a technique which enables us to
evaluate the quality of a test suite. It can help reveals the
kind of low test quality demonstrated above.

~ TREM
SZHMELLE

PROPERTY-EAZED
TESTIHG

private static StreameArguments> nonPassingExamples() {
return Stream.of(

of(e),
of (4000)

@ParameterizedTest()
@lethodSource ("nonPassingExamples™)
void returns_empty_for_decimal_out_of_range(int number) {
assertThat(convertToRoman (number))
+isEmpty();

are we confident enough in our production code
with the examples here?

we can delegate the generation of test cases to
our computer by using Property-Based Testing.

-
2
&

Praperty-Based Testing verifies that a function, program
or any system under test abides by a property.
We identify and test invariants.

~ TREM
SZHMELLE

